1. 求北師大版八年級數學下冊教師用書電子版
鏈接:/s/1dFAJvyT密碼:7fjn
2. 北師大版小學英語書(3起)所有的課文和單詞mp3下載
上360學習網學習吧,我是360學習網的於箱老師!我們的網站上有小學初中高中的所版有課程的權視頻講解免費看!並且還有試卷可以免費下載!每份試卷的每道題都有視頻講解可以免費看!
做好以下的內容就會進步的!
1 上課用心聽,聽懂多少就多少
2 作業獨立完成, 堅決不抄襲別人的,哪怕做不玩也不要抄襲
3.每天訂正好當天不會的和錯的題目 問老師問同學都可以
4考前復習平時不會的和錯的題目!
如果採納我的答案為正確答案,網路知道就會顯示我們的網址!我們是網路知道開放平台合作夥伴!
3. 求八年級北師大版的英語書的單詞表 哪位大神照個相片給我啊 謝謝啊
4. 求七年級上冊英語書(北師大版)所有單元的單詞。(要齊全)
找書啊
5. 北師大版八年級下冊數學全書概念總結
《數學》(八年級下冊)知識點總結
第一章 一元一次不等式和一元一次不等式組
一. 不等關系
※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.
¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.
※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.
非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0
非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0
二. 不等式的基本性質
※1. 掌握不等式的基本性質,並會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那麼a+c>b+c, a-c>b-c.
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,並且c>0,那麼ac>bc, .
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,並且c<0,那麼ac<bc,
※2. 比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a<b,那麼a-b是負數;反過來,如果a-b是負數,那麼a<b;
即:
a>b <===> a-b>0
a=b <===> a-b=0
a<b <===> a-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
三. 不等式的解集:
※1.
能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.
※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.
¤3. 不等式的解集在數軸上的表示:
用數軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左
四. 一元一次不等式:
※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
②去括弧;
③移項;
④合並同類項;
⑤系數化為1(不等號的改變問題)
※4. 一元一次不等式基本情形為ax>b(或ax<b)
①當a>0時,解為 ;
②當a=0時,且b<0,則x取一切實數;
當a=0時,且b≥0,則無解;
③當a<0時, 解為 ;
¤5. 不等式應用的探索(利用不等式解決實際問題)
列不等式解應用題基本步驟與列方程解應用題相類似,即:
①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;
②設: 設出適當的未知數;
③列: 根據題中的不等關系,列出不等式;
④解: 解出所列的不等式的解集;
⑤答: 寫出答案,並檢驗答案是否符合題意.
五. 一元一次不等式與一次函數
六. 一元一次不等式組
※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.
幾個不等式解集的公共部分,通常是利用數軸來確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個不等式的解集;
(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.
兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)
一元一次不等式
解集
圖示
敘述語言表達
x>b
兩大取較大
x>a
兩小取小
a<x<b
大小交叉中間找
無解
在大小分離沒有解
(是空集)
第二章 分解因式
一. 分解因式
※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
※2. 因式分解與整式乘法是互逆關系.
因式分解與整式乘法的區別和聯系:
(1)整式乘法是把幾個整式相乘,化為一個多項式;
(2)因式分解是把一個多項式化為幾個因式相乘.
二. 提公共因式法
※1.
如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.
如:
※2. 概念內涵:
(1)因式分解的最後結果應當是「積」;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3. 易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提「干凈」;
(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.
三. 運用公式法
※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.
※2. 主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3. 易錯點點評:
因式分解要分解到底.如 就沒有分解到底.
※4. 運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號.
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
四. 分組分解法:
※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.
如:
※2. 概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.
※3. 注意: 分組時要注意符號的變化.
五. 十字相乘法:
※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成
的形式,將二次三項式進行分解.
如:
※2. 二次三項式 的分解:
※3. 規律內涵:
(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.
(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.
※4. 易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
第三章 分式
一. 分式
※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱
為分式,對於任意一個分式,分母都不能為零.
※2. 整式和分式統稱為有理式,即有:
※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:
分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.
※4.
一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.
即: ,
※2. 分式乘方,把分子、分母分別乘方.
即:
逆向運用 ,當n為整數時,仍然有 成立.
※3. 分子與分母沒有公因式的分式,叫做最簡分式.
三. 分式的加減法
※1.
分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;
上述法則用式子表示是:
※3. 概念內涵:
通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;
②解這個整式方程;
③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.
※2. 列分式方程解應用題的一般步驟:
①審清題意;
②設未知數;
③根據題意找相等關系,列出(分式)方程;
④解方程,並驗根;
⑤寫出答案.
第四章 相似圖形
一. 線段的比
※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成
.
※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即
,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3. 注意點:
①a:b=k,說明a是b的k倍;
②由於線段 a、b的長度都是正數,所以k是正數;
③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;
_
圖1
_
B
_
C
_
A
④除了a=b之外,a:b≠b:a, 與 互為倒數;
⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則
二. 黃金分割
※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果
,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
※2.黃金分割點是最優美、最令人賞心悅目的點.
四. 相似多邊形
¤1. 一般地,形狀相同的圖形稱為相似圖形.
※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.
五. 相似三角形
※1. 在相似多邊形中,最為簡簡單的就是相似三角形.
※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.
※3. 全等三角形是相似三角的特例,這時相似比等於1.
注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.
※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.
※5. 相似三角形周長的比等於相似比.
※6. 相似三角形面積的比等於相似比的平方.
六.探索三角形相似的條件
_
圖2
_
F
_
E
_
D
_
C
_
B
_
A
_
l
_
3
_
l
_
2
_
l
_
1
※1. 相似三角形的判定方法:
一般三角形
直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例.
①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.
※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.
如圖2, l1 //
l2 // l3,則 .
※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.
八. 相似的多邊形的性質
※相似多邊形的周長等於相似比;面積比等於相似比的平方.
九. 圖形的放大與縮小
※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形;
這個點叫做位似中心; 這時的相似比又稱為位似比.
※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.
◎3. 位似變換:
①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.
②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.
③利用位似的方法,可以把一個圖形放大或縮小.
第五章 數據的收集與處理
一. 每周幹家務活的時間
※1. 所要考察的對象的全體叫做總體;
把組成總體的每一個考察對象叫做個體;
從總體中取出的一部分個體叫做這個總體的一個樣本.
※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;
為一特定目的而對部分考察對象作的調查叫做抽樣調查.
二. 數據的收集
※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.
而估計值是否接近實際情況還取決於樣本選得是否有代表性.
第六章 證明(一)
二. 定義與命題
※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.
定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.
※2. 可以判斷它是正確的或是錯誤的句子叫做命題.
正確的命題稱為真命題,錯誤的命題稱為假命題.
※3.
數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.
※4.
有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.
¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.
三. 為什麼它們平行
※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)
※2. 平行判定定理: 同旁內互補,兩直線平行.
※3. 平行判定定理: 同錯角相等,兩直線平行.
四. 如果兩條直線平行
※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;
※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;
※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.
五. 三角形和定理的證明
※1. 三角形內角和定理: 三角形三個內角的和等於180°
¤2. 一個三角形中至多隻有一個直角
¤3. 一個三角形中至多隻有一個鈍角
¤4. 一個三角形中至少有兩個銳角
六. 關注三角形的外角
※1. 三角形內角和定理的兩個推論:
推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;
推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.
6. 高考英語是背北師大版英語課本必修一到選修上書後面的單詞好還是背高考3500個單詞好
背單詞,其實不如多做完形填空閱讀理解,把裡面每個你認不到的單詞(非專有名詞內)背下來,每一篇,容每一個,即使第三四次遇到了還認不出意思,也要有耐性背和查,這樣你背的數量會減少,但效率會提高,我當初這樣做,一個月就從110穩定在了120以上,並且邁進過130。方法適合你最好,其實,背哪個都有用,都需要堅持,加油。
7. 北師大版高中英語書必修有多少單詞
3500讀,是必備的,你可以買高考單詞的小冊子,網上就有專門高考背單詞用的。這些單詞背會,然後多做點題就沒問題了
8. 高中北師大版英語書的單詞可以在哪個軟體中聽到
我愛背單詞9軟體有這個教材詞庫的,分冊分課的,外教發音可以跟讀,還可以記憶,淘寶有,北大老師開發的。
9. 求北師大版八年級下冊數學書內容
第16章 分式 (約課時)
第17章 反比例函數 (約8課時 )
第18章 勾股定理 (約8課時 )
第19章 四邊形 (約17課時)
第20章 數據的分析 (約15課時)
本冊書的5章內容涉及《數學課程標准》中「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個領域的內容。其中對於「實踐與綜合應用」領域的內容,本冊書在第19章和第20章分別安排了一個課題學習,並在每一章的最後安排了2~3個數學活動,通過這些課題學習和數學活動落實「實踐與綜合應用」的要求。這5章大體上採用相近內容相對集中的方式安排,前兩章基本屬於「數與代數」領域,隨後的兩章基本屬於「空間與圖形」領域,最後一章是「統計與概率」領域,這樣安排有助於加強知識間的縱向聯系。在各章具體內容的編寫中,又特別注意加強各領域之間的橫向聯系。
一、內容分析
「第16章 分式」
本章主要研究分式及其基本性質,分式的加、減、乘、除運算,分式方程等內容。這些內容分為三節安排。
第16.1節類比著分數的概念給出了分式的概念,類比著分數的基本性質探討了分式的基本性質,類比著分數的約分、通分介紹了分式的通分、約分等,這些內容為後面兩節的學習打下理論基礎。第16.2節討論分式的四則運演算法則,教科書從實際問題出發,首先研究了分式的乘除運算,類比著分數的乘除,探討了分式的乘除運演算法則;接下去,教科書也是從實際問題出發,採用與分數加減相類比的方法,研究了分式的加減運算,得出了運演算法則,並學習分式的四則混合運算;最後,教科書結合分式的運算,研究了整數指數冪的問題,將正整數指數冪的運算性質推廣到整數范圍,並完善了科學記數法。本節內容是全章的重點,其中分式的混合運算也是全章的一個難點。第16.3節討論分式方程的概念和解法,主要涉及可以化為一元一次方程的分式方程。教科書從實際問題出發,分析問題中的數量關系,列出分式方程,由此引出分式方程的概念,接下去研究分式方程的解法,教科書採用與學生已有經驗相聯系的方式,探討了如何將分式方程轉化為整式方程,從而得到分式方程的解的問題。解分式方程中要應用分式的基本性質,並且出現了必須驗根的情況,這是以前學習的方程中沒有遇到的問題,教科書結合具體例子,對分式方程為什麼需要驗根進行了解釋。分式方程提供了一種解決實際問題的數學模型,它具有整式方程不可替代的特殊作用,根據實際問題列出分式方程,是本章教學中的另一個難點。
「第17章 反比例函數」
本章的主要內容包括反比例函數的概念、圖象和性質,以及用反比例函數分析和解決實際問題等。本章是繼八(上)「第11章 一次函數」後的又一章函數的內容。全章分為兩節:第17.1節反比例函數,第17.2節實際問題與反比例函數,全章內容緊緊圍繞著實際問題展開,實際問題是貫穿全章的一條主線。
第17.1節主要研究反比例函數的概念、圖象和性質。本節中,教科書首先從幾個學生熟悉的實際問題出發,分析實際問題中變數間的對應關系,列出反比例函數的解析式,從而引進反比例函數的概念,使學生對反比例函數的認識經歷一個由感性到理性的過程;接下去,教科書利用描點法畫出了函數和的圖象,通過探究兩個函數圖象共同特徵,給出了反比例函數的圖象屬於雙曲線的事實,並進一步得到函數和的圖象關於x軸和y軸對稱的結論,接下去,教科書又讓學生利用這個結論畫出函數和的圖象,並進一步通過分析畫出的這四個函數的圖象,得到反比例函數的性質。第17.2節的內容是利用反比例函數分析、解決實際問題。本節中,教科書以例題的方式,給出了四個實際問題,這四個問題基本上是按照數量關系由簡單到復雜的順序安排的(依次是圓柱的底面積與高,做工時間與做工速度,動力是動力臂,輸出功率與電阻),它們從不同的方面體現了反比例函數是解決實際問題有效的數學模型。
「第18章 勾股定理」
本章主要研究勾股定理和勾股定理的逆定理,包括它們的發現、證明和應用。全章分為兩節,第18.1節是勾股定理,第18.2節是勾股定理的逆定理。
在18.1節中,教科書從畢達哥拉斯觀察地面發現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發現兩直角邊為邊長的小正方形的面積的和,等於以斜邊為邊長的正方形的面積,從而發現勾股定理,這時教科書以命題1的形式呈現了勾股定理。關於勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。通過推理證實命題1的正確性後,教科書順勢指出什麼是定理,並明確命題1就是勾股定理。之後,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題(畫出長度是無理數的線段等)中的應用,使學生對勾股定理的作用有一定的認識。第18.2節是研究勾股定理的逆定理,教科書從古埃及人畫直角的方法說起,給出如果一個三角形的三邊滿足,那麼這個三角形是直角三角形的結論,然後讓學生畫出一些兩邊的平方和等於第三邊的平方的三角形,探索這些三角形的形狀,可以發現畫出的三角形都是直角三角形,從而猜想如果三角形的三邊滿足這種關系,那麼這個三角形是直角三角形,這樣就探索得出了勾股定理的逆定理。此時這個逆定理是以命題2的方式給出的,教科書通過對照命題1和命題2的題設、結論,給出了原命題和逆命題的概念。命題2是否正確,需要證明,教科書利用全等三角形證明了命題2,得到勾股定理的逆定理。勾股定理的逆定理給出了判定一個三角形是直角三角形的方法,這在數學和實際中有廣泛應用,教科書通過兩個例題,讓學生學會運用這種方法解決問題。
「第19章 四邊形」
本章主要研究一些特殊四邊形的概念、性質和判定方法。對於特殊的四邊形,教科書按照對邊之間的平行關系把它們分成兩類:兩組對邊分別平行的四邊形——平行四邊形,一組對邊平行、另一組對邊不平行的四邊形——梯形。對於平行四邊形,除了研究一般的平行四邊形外,還研究了矩形、菱形和正方形等幾種特殊的平行四邊形。
第19.1節主要研究一般平行四邊形的概念、性質和判定。教科書從實際生活中的圖形出發,抽象概括出平行四邊形的概念,通過一系列的探究活動,得出平行四邊形的性質和判定方法,並對所得結論進行適當的推理證明;作為判定方法的一個應用,教科書通過一個例題得出了三角形中位線定理。第19.2節主要研究矩形、菱形、正方形的概念、性質和判定,本節是在前一節的基礎上,進一步研究這幾種特殊的平行四邊形。教科書首先研究了矩形和菱形,它們都是有一個特殊條件的平行四邊形,矩形是有一個角是直角的平行四邊形,菱形是有一組鄰邊相等的特殊的平行四邊形。在此基礎上,教科書研究了同時具有兩個特殊條件的平行四邊形,即正方形,它是有一個角是直角的特殊菱形,又是有一組鄰邊相等的特殊矩形。第19.3節研究梯形,梯形是與平行四邊形並列的另一種特殊四邊形,它有一組對邊平行,另一組對邊不平行,本節重點研究了一種特殊的梯形——等腰梯形,探究得出等腰梯形的性質和判定方法。教科書在最後一節,即第19.4節安排了一個課題學習:重心。通過尋找幾何圖形的重心的活動,了解規則的幾何圖形的重心就是它的幾何中心,體會數學與物理學科之間的聯系。
「第20章 數據的分析」
本章主要研究平均數(主要是加權平均數)、中位數、眾數以及極差、方差等統計量的統計意義。全章分為三節。
第20.1節是研究代表數據集中趨勢的統計量:平均數、中位數和眾數。本節中,教科書首先給出一個實際問題,通過分析解決這個實際問題,引進加權平均數的概念。為了突出「權」的作用和意義,教科書通過兩個例題,從不同方面體現「權」的作用。接下去,教科書對加權平均數進行擴展,包括如何將算數平均數與加權平均數統一起來,如何求區間分組的數據的加權平均數,如何利用計算器的統計功能求平均數,如何利用樣本平均數估計總體平均數的問題等。對於中位數和眾數,教科書通過幾個具體實例,研究了它們的統計意義。在本節最後,教科書通過一個具體實例,研究了綜合利用平均數、中位數和眾數解決問題的例子,並對這三種統計量進行了概括總結,突出了它們各自的統計意義和各自的特徵。第20.2節是研究刻畫數據波動程度的統計量:極差和方差。教科書首先利用溫差的例子研究了極差的統計意義。方差是統計中常用的一種刻畫數據離散程度的統計量,教科書對方差進行了比較詳細的研究。首先通過一個實際問題提出對兩組數據的波動情況的研究,並畫出散點圖直觀地反映數據的波動情況,在此基礎上,教科書引進了利用方差刻畫數據離散程度的方法,介紹了方差的公式,並從方差公式的結構上分析了方差是如何刻畫數據的波動的。隨後,又介紹了利用計算器的統計功能求方差的方法。本節最後,教科書利用所學知識解決本章前言中提出的問題,並研究了用樣本方差估計總體方差的問題。教科書在最後一節安排了一個具有一定綜合性和實踐性的「課題學習」。這個「課題學習」選用了與學生生活聯系密切的體質健康問題。由於本章是統計部分的最後一章,因此這個課題學習的綜合性比前面兩章統計中的課題學習更強。為了便於教學操作,教科書根據《中學生體質健康登記表》提供了一個樣例。
10. 下載北師大版高一到高三英語書的課文和單詞需要多少g的內存
下載文件:高中英語北師大版必修1-選修10單詞錄音.rar|請到這里: 下載【北師大版高中英語單詞及課文錄音下載(必修1~選修8)】